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Abstract

We propose a procedure to figure out the Baker–Campbell–Hausdorff (BCH)
solution, ln eX eY , when the exponent is a linear combination of the spin
operator along a direction and its ladder operators. The procedure converts
the manipulation of the BCH formula into that of a differential equation. It
is shown that the fixed point of the differential equation leads to the solution
we are looking for. We also remark that the validity of the present method
is restricted to the case when the solution branch can be determined in the
complex plane.

PACS numbers: 02.30.Tb, 02.20.Sv, 02.30.Jr, 02.30.Hq

1. Introduction

The time evolution of a system is usually described by ∂t�(t) = L�(t), where �(t) is a
status of the system at time t and L is a time-independent linear operator. Thus L contains
the whole information regarding the dynamics of the system. The state-ket in Hilbert space,
the probability density, and the density operator are evolved this way with their own operators
Ls [1–4]. Liouville’s theorem reveals the same description for the evolution of the density of
system points in the phase space [5]. When the evolution of � is considered for an infinitesimal
duration δt , after linearization, it reads �(t + δt) = (1 + δtL)�(t). Applying this process
repeatedly during the evolution time from 0 to t, it follows that:

�(t) = lim
N→∞

(
1 +

t

N
L
)N

�(0) ≡ etL�(0), (1)

1751-8113/09/135202+08$30.00 © 2009 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/42/13/135202
mailto:hkleepp@naver.com
http://stacks.iop.org/JPhysA/42/135202


J. Phys. A: Math. Theor. 42 (2009) 135202 H K Lee

where etL is called an evolution operator. This is the formal solution of ∂t�(t) = L�(t) for
the boundary condition at time t = 0. Besides, equation (1) reveals

eX =
∞∑

k=0

Xk

k!
(2)

for an operator X, the algebraic structure of which is exactly same as that of the ordinary
exponential function for number. In this way L generates the evolution operator etL, and
is called an evolution generator. Conversely, the logarithm of the evolution operator is
proportional to the evolution generator, and thus the essence of the dynamics is encoded in it.

According to equation (1), when L1 is applied for t1 and then L2 for t2 follows, the
evolution reads �(t1 + t2) = et2L2 et1L1�(0). This is directly extended to �(t1 + t2 + · · · + tn) =
etnLn · · · et2L2 et1L1�(0) when n number of generators are considered. Actually, this kind of
series operation frequently occurs in the nuclear magnetic resonance experiment [6, 7] and
in other types of coherent spectroscopy [8]. Quantum computing supposing a well-prepared
entangled state [4, 9] and the theory regarding squeezing operators [10] are also examples. This
is why the required state is usually squeezed through the series operation of a few generators
in control. Furthermore, the series operation is also used even in the numerical study, and
the associated numerical technique is called an operator-splitting scheme. For example, the
Suzuki–Trotter decomposition method [11, 12] is employed in integrating the time-dependent
Schrödinger equations in ab initio first-principle calculations. A similar method is also used
in studying the properties of stochastic systems [13, 14]. The operator-splitting scheme is an
alternative when it is hardly possible to realize the whole integrand directly in the conventional
way of numerical integration.

In the case of series operation, it is a question what the effective evolution generator
(Leff) is, which can be considered to govern the whole process consistently. As mentioned
above, the generator is proportional to the logarithm of the evolution operator. Thus when
the proportional constant is set to be 1, the logarithm of the evolution operator may represent
Leff without any loss of generality1. As an example, for the two-step process, it follows
that Leff = ln et2L2 et1L1 . However, this is merely a formal expression of Leff , symbolically
defined, and thus it hardly gives any information regarding the overall dynamics except a few
trivial cases like when L1L2 = L2L1. Therefore, it is challenging to obtain the informative
expression of Leff from the formal one. A classic work on this profound issue is [15] by
Wilcox, where various conventional approaches are synthesized. Recently, an approach based
on Cayley–Hamilton theory was proposed [16], which is applicable when Li and L2 are the
finite dimensional matrices.

In this work, we design a procedure to figure out Z satisfying eZ = eX eY , that is,
z = ln eX eY when X and Y are respectively the linear combination of a spin operator along a
direction and its lowering/raising operators. To assertain the significance of spin operators,
this problem has already been studied, more than four decades ago [15, 17]. We here present
a different and a rather intuitive procedure to solve it. First, we briefly introduce the Baker–
Campbell–Hausdorff (BCH) formula, a systematic manipulation of ln eX eY , in section 2. In
section 3, for the case of [X, Y ] = X or Y , we put forward an idea to convert the present
problem into the fixed-point problem of a differential equation. This is then generalized to the
above-mentioned case in section 4. Finally, we finish this work in section 5 with some remarks
regarding the limited applicability of the present result as well as a summarizing conclusion.

1 The proportional constant is determined according to the peculiarity of the system under investigation. However,
the algebraic complexity, caused by the logarithm, remains the same whatever value is assigned to the constant. In
this sense, we only focus on the handling of the logarithm itself.
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2. Baker–Campbell–Hausdorff formula

The ‘Baker–Campbell–Hausdorff (BCH) formula’ is concerned with the logarithm of eX eY ,
that is, looking for Z such that

∑∞
k=0 Zk/k! = eX eY holds. In principle, the solution is to be

obtained by comparing the two sides of
∑∞

k=0 Zk/k! = (∑∞
k=0 Xk/k!

)(∑∞
k=0 Y k/k!

)
, term

by term. The most familiar version of the BCH formula is [18]

Z = X + Y + 1
2 [X, Y ] + 1

12 [X, [X, Y ]] − 1
12 [Y, [X, Y ]]

+ · · · + kw1,...,wn
[w1, [..[wn, [X, Y ]]..]] + · · · , (3)

where [X, Y ] ≡ XY − YX,wi stands for either X or Y, and kw1,...,wn
is a real scalar. However,

the useful expression of kw1,..,wn
is not known yet, and thus equation (3) is hardly useful as far

as actual computation is concerned [18]. The importance of this version is because all terms
in the series, except the leading X + Y , are written in terms of repeated brackets of X and Y.

Another version of the BCH formula worth mentioning is [19]

Z = X +
∫ 1

0
dt g(eadX et adY )Y, (4)

where g(x) ≡ 1 +
∑∞

m=1
(−1)m+1

m(m+1)
(x − 1)m and adX is a linear map the operation of which is

defined by adXY = [X, Y ]. One may use equation (4) to obtain the kw1,...,wn
s of equation (3).

However, this integral form of BCH formula is still not so useful in practical study because of
its highly sophisticated structure. Exceptionally, when [X, Y ] = X or Y holds, this version is
useful to obtain the simple expression of Z. This will follow in the next section.

3. A simple non-Abelian case and fixed-point method

Equation (4) is able to determine the closed form of Z when

[X, Y ] = X or Y (5)

is provided. This algebra has been already well studied due to its significance in physics
[17, 15, 20], and it was already known that

Z = X + Y +

(
1

e − 1

)
[X, Y ]. (6)

Recently, [14] has applied x ln x/(x − 1) = 1 +
∑∞

m=1
(−1)m+1

m(m+1)
(x − 1)m to equation (4) to arrive

at the same result. In the following, it will be shown that this Z is also obtainable through the
fixed point of a differential equation.

In order to study in a different way, we introduce two differential operators: X = P̂ ρ2 and
Y = −P̂ ρ, where P̂ = ∂/∂ρ. Note that this holds [X, Y ] = X (the other case, [X, Y ] = Y ,
will be considered later). When [X, Y ] = X is provided, equation (3) leads to Z = αX + Y

for a constant α. This is because (i) any term of which wis represent X, at least once, becomes
null in the series of equation (3), (ii) while the others, whose wis are now always Y, remain
proportional to X. Thus it follows that

eP̂ ρ2
e−P̂ ρ = eP̂ (αρ2−ρ). (7)

It is interesting to interpret the exponential operators in equation (7) as the time evolution
operators during unit time, respectively. When the leading one, eP̂ ρ2

, is interpreted this
way, one may consider �(ρ, t) = et P̂ ρ2

�(ρ, 0) as the formal solution of ∂t� = P̂ ρ2�,
equivalently,

∂

∂t
�(ρ, t) = − ∂

∂ρ
(−ρ2�(ρ, t)) (8)
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Figure 1. The bold solid lines stand for the delta-peak distribution at discrete times (n =
0, 1, 2, . . .). The peak initially begins at n = 0, and evolves according to the map in equation (10).
Therein ρf is the stable fixed point of the map. The dashed curve on the t–ρ plane is the solution of
ρ̇ = −αρ2 + ρ with ρ0-initialization, where α = 1/ρf . Note that this α makes the solution curve
contact with all the delta-peaks, that is, ρn = ρ(n). See the text for detail.

with �(ρ, 0)-initialization. Herein, one may also interpret �(ρ, t) as a distribution over a
spatial coordinate ρ at time t and −ρ2 as the velocity field defined on the plane of (ρ, t). In this
case, equation (8) is no more than a continuity equation describing the flow of the distribution
whose strip located at ρ has velocity v(ρ) = −ρ2. As a consequence, microscopically, a
particle in the strip at time t is driven by

ρ̇(t) = −ρ2(t) (9)

as long as its dynamics is deterministic2.
When a particle is represented by a delta-peak distribution, equations (8) and (9) say

that the evolution of the delta-peak is completely determined by the solution of equation (9).
We note that the easily solvable ordinary differential equation in equation (9) completely
traces out the trajectory of any delta-peak distribution. For the other exponential operators in
equation (7), e−P̂ ρ and eP̂ (αρ2−ρ), one similarly finds ρ̇(t) = ρ(t) and ρ̇(t) = −αρ2(t) + ρ(t),
respectively. These are also easily solvable, and thus reveal useful information in the same
manner.

When a delta-peak at ρ = ρ0 is evolved by the lhs of equation (7), eP̂ ρ2
e−P̂ ρ , its position

first follows ρ̇ = ρ and then ρ̇ = −ρ2. Herein, each step lasts for unit time. Since the
solutions are ρ(t) = ρ0 et and ρ(t) = ρ0/(1 + ρ0t), respectively, the initial peak moves to
ρ = ρ0e/(1 + ρ0e). This is the combination of the two solutions where the unit-time evolution
is considered in each case. When this is repeatedly applied, the positions of the peaks form a
map to follow

ρn+1 = ρne

1 + ρne
, (10)

where ρn is the location of the peak at nth step. This map has two fixed points 0 and (e−1)/e,
and the former is unstable and the other is stable. Figure 1 shows the evolution of the delta-peak
distribution according to ρn.

We next pay attention to the fact that the same fixed points [0 and (e − 1)/e] should be
also realized by the rhs of equation (7), eP̂ (αρ2−ρ). This requirement is due to the equality in
equation (7). The microscopic dynamics is ρ̇ = −αρ2 + ρ this time, and then one may take
α = e/(e − 1) to fulfil the requirement. Figure 1 also shows the solution to this differential

2 The correspondence between equations (8) and (9) can be regarded as the deterministic counterpart of that between
Fokker–Planck and Langevin equations considered in the presence of stochasticity. See [2] for details.
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equation. Note that the stability of the each fixed point is also preserved. Thus if [X, Y ] = X

is provided, it follows that

eX eY = e
e

e−1 X+Y , (11)

which corresponds to one case of equation (6).
For the other case of [X, Y ] = Y , one may introduce X = P̂ ρ and Y = P̂ ρ2, which

hold [X, Y ] = Y . This time, in equation (3), the leading X + Y and the terms where all wis
are X contribute to Z. Then it is immediate that eP̂ ρ eP̂ ρ2 = eP̂ (ρ+βρ2). Following the same
procedure explained above, one finds that 0 and (1 − e)/e should be the fixed points of the
ρ̇ = −ρ − βρ2. This directly leads to β = e/(e − 1). Thus for [X, Y ] = Y , one finds that

eX eY = eX+ e
e−1 Y . (12)

As a consequence, the results in equations (11) and (12) show that equation (6) is also
obtainable by the method presented in this section. We below name it the fixed-point method.

4. Generalization to split three-dimensional simple algebra

The ‘split three-dimensional simple algebra’ [15, 17] is defined by B = {B1, B2, B3} satisfying

[B1, B2] = 2B2, [B1, B3] = −2B3, [B2, B3] = B1. (13)

This algebra is of wide interest in physics because it is actually equivalent to the fundamental
commutation relations of the angular momentum operators [1]. It is also realized in the
isotopic spin formalism [21], where the algebra of two uncoupled harmonic oscillators is
devised to show the commutator relations in equation (13). A set of {iJ−, iJ+, 2Jz} is such
an example when Jz is the angular momentum operator along the z-axis and J+ and J− are
the angular momentum raising and lowering operators, respectively. We below consider the
case where X and Y are the linear combination of Bis, that is, X = x · B = ∑3

i=1 xiBi and
Y = y · B = ∑3

i=1 yiBi . For these X and Y, due to the closure of B, equation (3) leads to

ez·B = ex·B ey·B, (14)

where z = (z1, z2, z3) is now under investigation.
In order to generalize the fixed-point method, let us take

B1 = 2P̂ ρ, B2 = −P̂ ρ2, B3 = P̂ . (15)

Note that these Bis exactly hold the condition of equation (13). Besides, when

fx(ρ) ≡ x2ρ
2 − 2x1ρ − x3 (16)

is introduced (fy(ρ) and fz(ρ) are also considered this way below), one may write ex·B =
e−P̂ fx (ρ). Remark that this can be understood as the unit-time evolution operator for an arbitrary
distribution �(ρ, t) from which evolution follows:

∂t� = −P̂ fx(ρ)�. (17)

Now if fx(ρ) is interpreted as the velocity field at ρ, equation (17) is no more than a continuity
equation, where ρ is treated as the spatial coordinate. Thus when a delta-peak distribution
of �(ρ, 0) = δ(ρ − ρ0) is used for an initial condition, it remains peak and moves while its
trajectory is subject to

ρ̇ = fx(ρ). (18)

Herein, we use the fact that equation (17) has no terms to bring about any diffusion originated
from stochasticity. Then one finds �(ρ, t) = δ(ρ − ρx(ρ0; t)), where ρx(ρ0; t) stands for the
solution of equation (18) at time t with ρ0-initialization.
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The same argument is also possible for ey·B when fy(ρ) is introduced. Thus when the rhs
of equation (14), ex·B ey·B , is applied to δ(ρ − ρ0), one first considers ey·Bδ(ρ − ρ0), and next
the result is applied to ex·B . Then it follows that

ex·B ey·Bδ(ρ − ρ0) = δ(ρ − ρx(ρy(ρ0; 1); 1)). (19)

In continuing, the other side of equation (14), ez·B , is also treated in the similar manner to find

ez·Bδ(ρ − ρ0) = δ(ρ − ρz(ρ0 : 1)). (20)

As a consequence, equating equation (19) with equation (20), one finds

ρz(ρ0; 1) = ρx(ρy(ρ0; 1); 1). (21)

In order to go forward, the concrete expression of ρx(ρ0; t) is required. Following
elementary calculus, one straightforwardly obtains that

ρx(ρ0; t) = (x+ − x− etx2�x)ρ0 + x+x−(etx2�x − 1)

(1 − etx2�x)ρ0 + (x+ etx2�x − x−)
, (22)

where x± = x1 ±
√

x2
1 + x2x3 and �x ≡ x+ − x−. Thus when this result is applied to

ρx(ρy(ρ0; 1); 1), it is direct that ρx(ρy(ρ0; 1); 1) = (aρ0 + b)/(cρ0 + d), where⎧⎪⎪⎨
⎪⎪⎩

a = (x+ − x− ex2�x)(y+ − y− ey2�y) + x+x− (ex2�x − 1)(1 − ey2�y),

b = (x+ − x− ex2�x)y+y−(ey2�y − 1) + x+x−(ex2�x − 1)(y+ ey2�y − y−),

c = (1 − ex2�x)(y+ − y− ey2�y) + (x+ ex2�x − x−)(1 − ey2�y),

d = (1 − ex2�x)y+y−(ey2�y − 1) + (x+ ex2�x − x−)(y+ ey2�y − y−).

(23)

Herein y± = y1 ±
√

y2
1 + y2y3 and �y = y+ − y−.

When the iterated operation of ex·Bey·B on ρ0 is considered, equation (22) leads to a map
of

ρn+1 = aρn + b

cρn + d
, (24)

where ρn is the result after nth operation. Then the fixed point of this map, ρfix, satisfies cρ2
fix −

(a − d)ρfix − b = 0. Due to equation (14), the related fixed points should be also realized
by the iterated operation of ez·B . That is, the fixed points have to be encoded in ρ̇ = fz(ρ).
Consequently, one can write

fz(ρ) = z2

(
ρ2 − a − d

c
ρ − b

c

)
. (25)

Thus it follows that

z = (z1, z2, z3) =
(

a − d

2c
z2, z2,

b

c
z2

)
, (26)

which can be completely fixed up if z2 is determined.

One may rewrite equation (25) as fz(ρ) = z2(ρ − z+)(ρ − z−) for z± =
(

a−d
c

±√(
a−d

c

)2
+ 4b

c

)/
2. Then ρz(ρ0; 1) is directly revealed by equation (22), and this also leads

to a map of

ρn+1 = (z+ − z− ez2�z)ρn + z+z−(ez2�z − 1)

(1 − ez2�z)ρn + (z+ ez2�z − z−)
, (27)

where �z ≡ z+ − z−. After the comparison between equations (24) and (27), one finds

a

c
= z+ − z− ez2�z

1 − ez2�z
. (28)
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Finally, one obtains

z2 = 1

�z
ln∗ cz+ − a

cz− − a
, (29)

where ln∗ r = ln |r| + i(arg r + 2nπ) for −π < arg r � π . Herein, n is a proper integer
standing for the solution branch of the complex plane.

To show an application of the present method, we consider Z = ln eXeY when
[X, Y ] = γ Y holds for real γ . Now for the Bis of equation (15), it is direct that x = (γ /2, 0, 0)

and y = (0, 1, 0). In this case, the present method is not directly applicable because it is
based on the two different solutions of the quadratic equation, fv(ρ) = 0 for v = x, y, or z

(see equations (16) and (22)). Thus instead one may introduce a dummy variable to observe
the procedure of the present method, and then take zero limit of it later. For the present
example, since x2 = y1 = 0 is the obstacle, x2 = y1 = ε is used first, and then the ε → 0
limit is considered later. This kind of manipulation is justified by the fact that equation (22)
covers the solutions obtained when fv(ρ) is constant or linear with respect to ρ. After a little
algebra, one obtains a = −2γ, b = 0, c = 2γ eγ , d = −2γ eγ in equation (23), which gives
z+ = (eγ −1)/eγ and z− = 0 for γ � 0 or z+ = 0 and z− = (eγ −1)/eγ for γ < 0. These z±s
lead to z2 = (γ +i2nπ) eγ /(eγ −1) in common. Since the kw1,...,wn

s in equation (3) as well as x
and y are real, the z now in consideration becomes also real. To do so, z2 in equation (29) has to
be real, which is possible only for n = 0. Consequently, one finds z = (γ /2, γ /(1 − e−γ ), 0)

by equation (26), and thus it finally reads that Z = X + (γ /(1 − e−γ ))Y . The traditional
procedures suggested in [15, 17] also reveal the same result.

5. Remarks and conclusion

In the previous example, we show a case where n = 0 is selected as the solution branch in
equation (29). This is the direct consequence of the following conditions: (i) (a − d)/c, b/c,
and z are real and (ii) z± is also real in the example. The leading one always holds for real x and
y. When x and y are real, ρx(ρy(ρ0; 1); 1) is always real for any real ρ0. This guarantees that
a, b, c and d are real up to a common phase factor eiδ [22], and thus it follows that (a − d)/c

and b/c are real. This again leads to the fact that z are real-valued, which is already argued
in the previous example in a different way. Meanwhile, the latter condition is given by the
computation based on the actual value of x and y in the example. Although one may find the
solution branch in this way, it is merely a problem-specific finding. Hence we remark that a
systematic criterion to select solution branch in equation (29) is not established yet. The issue
of making the present fixed-point method complete remains for future work.

We propose a procedure to figure out ln eXeY , the BCH solution, when X and Y are the
elements of the split three-dimensional simple algebra (see equation (13) for the definition
of this algebra). The procedure, named the fixed-point method, converts the manipulation of
BCH formula into that of a differential equation. Therein the fixed point of the differential
equation leads to the solution we are looking for. It is remarked that the validity of the fixed-
point method is restricted to the case when the branch of the complex plane can be determined.
Thus the issue regarding the selection of the solution branch remains for future work.
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